
ary 2004

PHYSICAL REVIEW E 69, 016122 ~2004!
Universality class of absorbing transitions with continuously varying critical exponents
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The well-established universality classes of absorbing critical phenomena are directed percolation~DP! and
directed Ising~DI! classes. Recently, the pair contact process with diffusion~PCPD! has been investigated
extensively and claimed to exhibit a different type of critical phenomenon distinct from both DP and DI
classes. Noticing that the PCPD possesses a long-term memory effect, we introduce a generalized version of
the PCPD~GPCPD! with a parameter controlling the memory strength. The GPCPD connects the DP fixed
point to the PCPD point continuously. Monte Carlo simulations strongly suggest that the GPCPD displays, to
our knowledge, novel critical phenomena which are characterized by continuously varying critical exponents.
The same critical behaviors are also observed in models where two species of particles are coupled cyclically.
We present one possible scenario that the long-term memory may serve as a marginal perturbation to the
ordinary DP fixed point.
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I. INTRODUCTION

A nonequilibrium system with trapped~absorbing! states
may display a so-called absorbing phase transition betw
an inactive and an active phase@1,2#. A state which has a
zero transition probability into any other state is called
absorbing state. A system in the inactive phase alw
evolves into the absorbing state and stays there forever
the other hand, a system in the active phase may no
trapped in the absorbing state with a finite probability. Th
has been growing interest in the critical behaviors of
absorbing phase transitions since a wide range of phenom
such as epidemic spreading, catalytic chemical reactions,
surface roughening, display absorbing transitions@1,2#.

Besides their wide applications, absorbing critical ph
nomena have been the focus of a number of theore
works, since they are categorized into a few universa
classes characterized by the symmetry between the abso
states and/or the conservation in dynamics@3–6#. Criticality
of each universality class is described by three indepen
critical exponents;b for the order parameter,n' for the cor-
relation length, andn i for the relaxation time. For system
which are free from quenched disorder and evolve o
through short-range processes, the directed percolation~DP!
and the directed Ising~DI! ~or parity conserving! classes are
well-established ones.

The DP class involves typically a single absorbing st
without any kind of conservation in dynamics@7,8#. The con-
tact process, a model for epidemic spreading, is a protot
cal example of the DP class@9#. In this model, individuals on
a lattice are either infected or healthy. Infected ones may
healed spontaneously or infect healthy neighbors. There
single absorbing state where all individuals are heal
Varying the relative rates between infection and healing p
cesses, one can find a phase transition from the absor
phase into the active phase.

Its stationary and dynamic critical behaviors are char
terized by spatiotemporal cluster patterns of infected in
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viduals. These clusters can be mapped to the directed pe
lation clusters@1#, when the temporal direction is set to b
the preferred direction of DP clusters. So all critical exp
nents~fractal dimensions! take the same values as the corr
sponding DP critical exponents. Most of the systems w
absorbing states belong to this DP class, e.g. the Doma
Kinzel cellular automaton@10#, the Ziff-Gulari-Barshad
model for a surface catalytic reaction@11#, the branching-
annihilating random walks with an odd number of offsprin
@12#, and the pair contact process~PCP! @13#. Unlike others,
the PCP has infinitely many absorbing states, which lead
controversial transient behaviors, i.e., nonuniversal sca
@13–16# versus absence of scaling@17,18#. But its stationary
critical behavior still belongs to the DP class at low dime
sions@19#.

The DI class includes systems with two equivalent a
sorbing states with Ising-likeZ2 symmetry or equivalently in
one dimension~1D! a single absorbing state with parity con
servation in the domain wall language. The nonequilibriu
kinetic Ising ~NKI ! model with combined zero-temperatu
spin-flip dynamics and infinite-temperature spin-exchan
dynamics is an example of the DI systems@20#. In this
model, only Ising spins near domain walls can flip, so th
the two states with all spins up or down are absorbing. Th
two absorbing states are probabilistically equivalent.
terms of the domain wall, there is a single absorbing st
~vacuum! with parity conservation in the number of doma
walls, since spin flips change it only in pairs. Other examp
in the DI class include the interacting monomer-dimer mo
@21#, the branching-annihilating random walks with an ev
number of offspring@12,22#, and generalized versions of th
contact process@5,23#. There also exist models in the D
universality class that have infinitely many absorbing sta
@24–26#. They also display nonuniversal scaling behaviors
the transient regime@25,26#.

There is aninfinite dynamic barrierbetween two absorb
ing states of DI systems, which is similar to the free ene
barrier between two ground states in the ordered phase o
©2004 The American Physical Society22-1
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equilibrium Ising system@24#. A state near one absorbin
state cannot evolve into a state near the other absorbing
by a finite number of successive local changes. In ot
words, a frustration~domain wall! in a configuration gener
ated by pasting two absorbing configurations cannot dis
pear within a finite number of time steps. For example, a s
state in the 1D NKI model with all spins up in one sem
infinite lattice and all spins down in the other semi-infin
lattice never relaxes to the absorbing state.

The concept of the infinite dynamic barrier is very use
to understand the critical behavior of systems with infinite
many absorbing states. For instance, the PCP@13# and the
modified interacting monomer-dimer~IMD-IMA ! model
@24# have infinitely many absorbing states. In the PCP
frustration between any of the absorbing states can disap
locally, so the absorbing transition falls into the DP cla
However, in the IMD-IMA, the infinite dynamic barrie
separates the absorbing states into two equivalent group
absorbing states, which results in the DI-type critical beh
ior @24#.

A few exceptional cases have been reported: Le´vy-type
long-range flights are relevant to the absorbing critical p
nomena, which lead to continuous variation of critical exp
nents@27#. Multispecies particle reaction-diffusion system
also show non-DP and non-DI critical behaviors, where
interspecies hard-core interaction plays an important
@28#. A lattice gas model with a global conservation in t
particle number shows a novel type criticality related to se
organized critical systems@29#. The nonequilibriumq-state
Potts models in higher dimensions show interesting crit
behaviors@30#. A quenched randomness also leads to diff
ent absorbing critical phenomena@31#.

Recently, Howard and Ta¨uber introduced a modified PC
~called as PCPD! model, which allows single-particle diffu
sion @32,33#. They studied the PCPD in the context
bosonic field theory and showed that the field theory is n
renormalizable and the absorbing transition does not be
to the DP class. A fermionic version was first studied
Carlon, Henkel, and Schollwo¨ck @34# in 1D, which raises
continuing debate on the universality class@34–40#. Hereaf-
ter, we only focus on the 1D systems.

The PCPD is defined on a lattice, each site of which
either occupied by a particle (X) or empty (B). Dynamic
rules are given as follows. A nearest neighbor pair of p
ticles can either annihilate (XX→BB) with probability
p(12d) or branch one offspring (XX→XXX) to one of the
neighboring sites with probability (12p)(12d). A particle
can hop to its neighboring site with probabilityd. Branching
and hopping attempts are rejected if a particle would land
the top of another particle.

When the diffusion is not allowed (d50), it reduces to
the ordinary PCP with infinitely many absorbing states. A
state with only isolated particles is an absorbing state.
there is no infinite dynamic barrier between them and
transition belongs to the DP class@13#.

At nonzerod, the PCPD has onlytwo absorbing states; a
vacuum state and a state with a single diffusing particle
fact, the latter forms an absorbing subspace consistingL
configurations with system sizeL in 1D. Once the system
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evolves into this absorbing subspace, it drifts freely ins
the subspace but cannot escape out of it. The threshold tr
fer process@15# is one example with an absorbing subspa
But it does not contain any other absorbing state and disp
the DP-type transition.

The structure of absorbing states in the PCPD is uni
with one pointlike absorbing state and one absorbing s
space. It is clear that there is no infinite dynamic barr
between these absorbing states. Hence, one may argue
the PCPD should belong to the DP class. However, this
gument turns out to be premature. Background diffusing s
tary particles generate along-term memory effecton the or-
der parameter~pair density!. Solitary particles detached from
different trains of particles diffuse and collide each other
create a new particle pair, which leads to history depende
in the pair-creation rate. This process is governed by ann
lating random walks, where the colliding probability of tw
walkers decays algebraically with time. This long-ter
memory effect might be relevant and leads to a new type
critical phenomenon.

A numerical investigation using density matrix renorma
ization group techniques@34# revealed that numerical value
of some critical exponent ratios are close to the DI valu
rather than the DP values. Subsequent extensive simula
@35–37# seem to exclude the possibility of both DI and D
classes and suggest that the PCPD belongs to a new un
sality class. However, huge corrections to scaling conceal
true asymptotic scaling behavior and numerical estimates
the critical exponents are obscure with considerable un
tainty. Similar critical behaviors were also observed in
lated models@38–40#, which include a modified PCPD@39#
with the branching process 2X→4X instead of 2X→3X and
an effective model with two species of particles coupled
clically @38#.

Despite all those efforts, universal features that co
characterize the novel universality class were not uncove
yet. We explore this issue in the present work. Hinrichs
noticed that two types of degrees of freedom are presen
the PCPD; a particle pair that can branch and annihilate,
a diffusing solitary particle@38#. All activities that can
change the number of particles are carried out by the par
pairs. So the particle pair density can be regarded as an o
parameter. The two degrees of freedom are coupled cy
cally; one can be transmuted to the other, and vice versa
particle diffusion. The cyclic coupling results in the long
term memory effect as described above, which we beli
plays a crucial role in this critical phenomenon.

These observations lead us to consider a general
PCPD ~GPCPD! model with a parameter controlling th
strength of the memory effect, which will be explained
Sec. II. Without the memory effect, the GPCPD should f
into the DP class. So, our parameter connects the DP fi
point to the PCPD point, which allows us to study the lon
term memory effect on the DP-type models systematical

One may expect that the long-term memory would se
as a relevant~at least, marginal! perturbation to the DP fixed
point, in order to account for the non-DP-type novel critic
behavior at the PCPD point. In that case, one can hope
by varying the control parameter, those huge correction
2-2
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scaling found at the PCPD point might be reduced to a
erable level, so the moderate numerical efforts may rev
the true asymptotic behavior.

We performed extensive Monte Carlo simulations in S
III. Our numerical results show that corrections to scaling
huge only near the PCPD point and the asymptotic regim
are rather easily reached at other values of the control
rameter. So, we were able to estimate the values of the c
cal exponents with reasonable accuracy for a wide rang
the control parameter, except not very near the PCPD po
In the absence of the memory effect, we find the DP univ
sality class as expected. With the memory effect, surp
ingly, we observe continuous variation of critical expone
with the memory strength. Especially, the order parame
exponentb varies more than 60%, which is far beyond t
statistical errors less than at most 10%.

In order to establish this novel universality class with co
tinuously varying critical exponents firmly, in Sec. IV, w
introduce two independent model systems with two spe
of particles: one species plays the role of the particle p
and the other the role of the diffusing solitary particles. Th
are coupled cyclically through transmutations, which lead
the long-term memory effect. These models are also stu
by Monte Carlo simulations, and are shown to display
same type of critical phenomena as in the GPCPD.

In Sec. V, we suggest one possible scenario to accoun
this universality class with continuously varying exponen
This scenario assumes that the long-term memory plays
role of the marginal perturbation to the DP fixed point. W
numerically check this scenario by measuring the lifeti
distribution of solitary particles. Our analysis shows that t
scenario may be considered as a reasonable one, thou
needs full field-theoretical analysis for a definitive test.
nally, in Sec. VI, we summarize our works and discuss o
various possible scenarios recently suggested by othe
searchers.

II. MODEL

The GPCPD model is defined on a 1D lattice of sizeL
with the periodic boundary conditions. Each site is eith
occupied by a particle~X! or empty (B). The system evolves
in time according to the dynamic rules of the PCPD~see Sec.
I! with one additional ingredient. When the hopping of
solitary particle creates a new particle pair through collid
with another particle, this new particle pair annihilates
stantaneously with probability 12r or survives with prob-
ability r. This does not apply to particle pairs formed b
branching processes. Atr 50, two solitary particles always
annihilate upon meeting and have no chance to turn in
nearest neighbor particle pair. The parameterr controls the
transmutation rate of two solitary particles into a near
neighbor particle pair upon meeting. Atr 51, the model re-
duces to the ordinary PCPD.

As in the PCP, we take the particle pair density as
order parameter. At nonzeror, there is a feedback mecha
nism to increase the pair density via the collision of diffusi
solitary particles. A solitary particle is created from a train
particles by a hopping~detaching! process of a boundar
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particle or a pair annihilation process of a triplet of particle
In this process, at least one particle pair is sacrificed. T
solitary particles diffuse and collide with each other to for
a particle pair with probabilityr. So, one can say that particl
pairs temporarily turn into solitary particles and resurre
later by collision of those solitary particles. The collidin
probability of two diffusing particles usually decays algebr
ically in time. Therefore, this feedback mechanism induc
long-term history dependence, which is called thelong-term
memory effect, of the order parameter. Asr increases, the
long-term memory effect becomes stronger. The PC
model (r 51) has the maximum memory effect.

The r 50 point is special. Collision of two particles doe
not generate a particle pair at all, so there is no feedb
mechanism for the pair density. Once the system evolves
a state without any particle pair, it stays inside a subspac
states without a pair and, in the end, will be trapped into o
of the absorbing states~the vacuum state and the states w
a single particle!. So, in the viewpoint of the order paramet
as the pair density, the no-pair subspace serves as the ab
ing subspace which the system cannot escape from. Ev
tion inside this subspace is governed by the trivial pair an
hilation dynamics of diffusing particles that have no memo
effects on the order parameter fluctuations. Therefore,
GPCPD atr 50 should be effectively equivalent to the PC
model without diffusion. The no-pair subspace is exactly
same as the absorbing subspace of the latter. The coup
constants for the branching and annihilation processes
renormalized due to the inclusion of the single-particle d
fusion, and the critical point is shifted. However, the critic
fluctuations should be identical and we expect the DP-t
stationary critical behavior at the absorbing transition. W
also expect the ordinary DP-type scaling in the transient
gime, starting from a single pair of particles, in contrast
the controversial transient behaviors in the PCP model.

At nonzeror, the system escapes from the no-pair su
space with finite probability. The order parameter can be s
nificantly influenced by the memory effect induced by th
in-and-out dynamics with respect to the no-pair subspa
The parameterr connects the DP fixed point (r 50) to the
PCPD point (r 51). Therefore, the GPCPD allows us
study systematically the origin of the new type of critic
behavior found in the PCPD.

Dynamics of the GPCPD can be implemented in Mon
Carlo simulations as follows~see Fig. 1!. First, select a pair
of sites (i ,i 11) at random. When both sites are occupie
the two particles~a! annihilate with probability (12d)p or
~b! branch a particle at one of the neighboring sites,i 21 or
i 12, with probability (12d)(12p). Branching attempt to

FIG. 1. Illustration of dynamic rules. Filled~empty! circles rep-
resent occupied~empty! sites. Dots indicate selected sites.
2-3



e
il-

ge

in
ite
ne
fo

te
p

at
e

d

e
in
n
re

ng
s
-
te
rm
a

ut
a
e
th
ub

th

le
ir-
o-
-

et
m
ne

a

ght
ng
he
cal
tive

y

ate
se.
tion

aged
c-

-
n
to

the
h
een
m-
-
ite

in
e

J. D. NOH AND H. PARK PHYSICAL REVIEW E69, 016122 ~2004!
an already occupied site is rejected. When only one sit
occupied,~c! the particle hops to the other site with probab
ity d. If the hopping~not branching! creates a new particle
pair, the pair~d! survives with probabilityr or ~e! annihilates
with probability 12r . When both sites are empty, no chan
is made. The time increases by one unit afterL such trials.

To speed up simulations, we adopted a technique utiliz
a list of active pairs of neighboring sites. A neighboring s
pair is stored in the active pair list if it contains at least o
particle. Then, a site pair in the list is selected randomly
dynamics. The time increases by 1/Npair with Npair the num-
ber of active pairs in the list at each attempt.

III. MONTE CARLO SIMULATIONS

Monte Carlo simulations were performed to investiga
critical behaviors of the GPCPD. The critical points are a
proached by varyingp at eachr 50, 0.25, 0.5, 0.75, and 1
with fixed diffusion probabilityd50.1.

A. Defect simulations

We performed the so-called defect simulations to loc
the critical points. Starting with a single pair of particles, w
measured the survival probabilityP(t) that the system is
surviving at time t, the number of particle pairsN(t) aver-
aged over all samples, and the mean distance of sprea
R(t) averaged over the surviving samples.

Our definition of surviving samples is different from th
conventional one where all samples not being trapped
one of the absorbing states are considered as surviving o
Here, only samples with at least one particle pair are
garded as surviving. Samples with only solitary diffusi
particles~no pair but irrespective of the number of particle!
are regarded asdeadones, even if they are not trapped com
pletely. They may be dead for a while, but can resurrect la
as surviving samples when diffusing particles meet and fo
a particle pair. The dead states form the no-pair subsp
~see Sec. II!. At nonzeror, the system can evolve in and o
of the no-pair subspace. With this definition, the surviv
probability P(t) actually represents the probability that th
system contains at least one particle pair, or equivalently
probability that the system stays outside the no-pair s
space.

The conventional surviving ensemble includes most of
states inside the no-pair subspace except thetrue absorbing
states~the vacuum state and the states with a single partic!.
The survival probability is now dominated by the trivial pa
annihilation dynamics of diffusing particles inside the n
pair subspace@41#, which does not reflect the proper dy
namic and stationary scaling behavior of the order param
~the pair density!. Hence, the fluctuations of the order para
eter should be described in our surviving ensemble defi
as the complement of the no-pair subspace.

At criticality, the values of the measured quantities dec
algebraically@42# as

P~ t !;t2d8,

N~ t !;th, ~1!
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R~ t !;t1/z,

and the double logarithmic plots against time show strai
lines. Off criticality, these plots show curvatures in the lo
time limit. Precise estimates for the critical points and t
scaling exponents can be obtained by examining the lo
slopes of the curves. The local slope, called as the effec
exponent, is defined as

d8~ t !52
ln@P~ t !/P~ t/m!#

ln m
,

and similarly forh(t) andz(t) with a constantm ~taken to
be 10!. The power-law scaling behavior implies that the
converge to the values ofd8, h, and z asymptotically as
t→` at p5pc . At off-critical points, they behave like being
at the critical point in the early time regime and then devi
to a trivial value characteristic of the active or inactive pha
From this crossover behavior one can determine the loca
of the critical point.

The defect simulations were performed up to 105 time
steps and the observables were measured and aver
over ;23105 samples. Figure 2 shows plots of the effe
tive exponents against 1/t at r 50.5. Apparently, the effective
exponents ford8, h, andz converge to their asymptotic val
ues at p50.066 36, while they clearly bend up or dow
with a curvature atp50.066 32 and 0.066 40. It leads us
estimate thatpc50.066 36(4) andz51.67(3), h50.26~1!,
d850.14~1!.

The errors in the exponent values mainly stem from
uncertainty in thepc estimate. Statistical errors are muc
smaller than this systematic error, which can be clearly s
in Fig. 2. A correction to the scaling could lead to a syste
atic error in the estimate ofpc , and hence, of critical expo
nents. The plots in Fig. 2 show that the correction is qu
small for N(t). The effective exponentsd8(t) andz(t) have
a little time dependence~seemingly, linear dependence
1/t) even at the estimatedpc , while such time dependenc
is negligible forh(t) at the estimatedpc . So the best esti-
mate forpc is obtained from the plot ofh(t) versus 1/t @43#.
We also find similar behaviors for other values ofr except
r 51.

FIG. 2. The effective exponents for the GPCPD atr 50.5.
2-4
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We also plot the combination of the effective expone
d(t)[1/z(t)2@h(t)1d8(t)#. At criticality, this exponent
should converge asymptotically to the ratio of two station
scaling exponents,b/n i ~known as the initial slip exponent!,
if the hyperscaling relation@15# is satisfied. Atr 50.5, we
obtain thatd50.197(5). This value will be compared to
b/n i estimated independently later in the static Monte Ca
simulations. The same analysis is repeated for other value
r and the results are summarized in Table I.

The two exponentsd andd8 do not necessarily coincid
unless the evolution operator is invariant under the tim
reversal transformation@2#. However, it is well known in
models with multiple absorbing states that these two ex
nents coincide if one starts with the so-callednatural initial
configurations in defect simulations. This aspect will be d
cussed in details elsewhere@44#.

The PCPD point atr 51 is an exceptional case. Ver
strong corrections to scaling are observed in all quantitie
can be seen in Fig. 3. It has been already noted in R
@35,36#. We tried to locate the critical point from the curva
ture change in the plots of the effective exponent versust.
The plot ofh(t) versus 1/t shows thatpc.0.1113, while the
plot of d8(t) versus 1/t shows thatpc.0.1112. It suggests
that the asymptotic scaling regime has not been reached
until 105 time steps at the PCPD point. The exponentd
shows the worst behavior. Even one cannot see any di
ence between supercritical and subcritical behaviors~so we
could not estimate an error bar ofd). So the values ofpc and
critical exponents at the PCPD limit contain the largest

TABLE I. Critical points and critical exponents estimated fro
the defect simulations. As a reference, corresponding values o
DP and DI classes~taken from Ref.@22#! are given.

r pc z h d8 d

0 0.04687~2! 1.58~1! 0.314~6! 0.160~5! 0.160~5!

0.25 0.05505~5! 1.62~3! 0.29~1! 0.15~1! 0.175~5!

0.50 0.06636~4! 1.67~3! 0.26~1! 0.14~1! 0.197~5!

0.75 0.08315~5! 1.75~5! 0.20~2! 0.13~2! 0.235~5!

1 0.1112~1! 1.7~1! 0.18~5! 0.09~2! 0.31
DP 1.579~2! 0.3137~10! 0.1596~4! 0.160~2!

DI 1.753~3! 0.000~1! 0.285~2! 0.285~4!

FIG. 3. The effective exponents for the PCPD (r 51).
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certainty. It may be quite interesting to investigate the orig
and the nature of the unexpected huge corrections at
PCPD point, but we do not have any reasonable explana
at this moment.

When one faces a strong correction-to-scaling behavio
investigating numerically unknown critical phenomena o
model system, one may perform an extensive simulation
to much larger length scales and much longer time sca
However, if it is beyond the present day’s computing cap
bility, one should look for an efficient alternative mod
which presumably exhibits the same critical behavior w
smaller correction to scaling. The PCPD model applies
such a case.

The GPCPD model may serve as an efficient alterna
model for the PCPD model. Ther 51 ~PCPD! point of the
GPCPD model is not aspecial point; it possesses neither a
additional symmetry nor conservation law, compared to ot
points for 0,r ,1. Only the strength of the long-term
memory effect changes withr. One may guess that th
GPCPD model with all nonzeror may belong to the same
universality class as the PCPD model and hope that the
rections to scaling are controllable for smallr. It turns out
that the GPCPD model possesses much smaller correc
to scaling forr ,1 ~at least up tor 50.75). So the critical
points are very accurately estimated and the critical ex
nents are determined with reasonable errors.

At r 50, the values of all exponents are in excellent a
cord with the DP values. It confirms the expectation that
GPCPD without the memory effect should belong to the
class. For other values ofrÞ0, the exponent values begin t
deviate from the DP values. They are also clearly differ
from the DI values. It confirms that the GPCPD with th
long-term memory effect (rÞ0) displays, to our knowledge
novel-type critical phenomena that do not belong to the
or DI universality class. More importantly and very surpri
ingly, the exponent values show a dependence onr ~see
Table I!. This opens up a new possibility that the universal
class would be characterized by continuously varying criti
exponents, i.e., not a fixed point but a fixed line parametri
by the memory strengthr. This remarkable finding should b
examined carefully whether it is also present in the scal
property of the steady states.

B. Static simulations

The criticality in the steady states is studied via the
called static Monte Carlo simulations where one starts wit
macroscopically occupied configuration on finite size l
tices. Here, we start with the fully occupied configurati
and use the periodic boundary conditions. As the order
rameter, we measure the pair densityrs(t) averaged over
surviving samples that contain at least one particle pair
given timet, or equivalently averaged over the compleme
tary states to the no-pair subspace, as defined in the de
simulations previously. The averaged quantities over the c
ventional surviving ensemble would also describe the sys
properly in the early time regime, up to the time scale wh
the system typically enters into the no-pair subspace. H
ever, since then, the trivial pair-annihilation dynamics of d

he
2-5
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fusing particles governs the system evolution@41# and the
average value of the order parameter crosses over to
trivial stationary value.

The pair density averaged over our surviving ensem
satisfies a finite-size-scaling form as

rs~«,t,L !5L2b/n' f ~«L1/n',t/Lz!, ~2!

whereL is the system size and«[pc2p is the distance from
the critical pointpc . The exponentsb andn' are the critical
exponents associated with the order parameter and the sp
correlation length, respectively. The dynamic exponentz is
the ratio of the two exponents;z5n i /n' , wheren i is the
relaxation time exponent~see Ref.@2# for a review!.

At criticality ( p5pc), we have

rs~0, t,L !5L2b/n'g~ t/Lz! , ~3!

whereg(x);x2b/n i for small x and becomes a constant fo
large x. Thus, at p5pc , the pair density decays asrs
;t2b/n i for t!Lz and saturates to a steady-state valuers
;L2b/n' for t@Lz.

The power-law scaling behavior in the transient regi
(t!Lz) can be studied with an effective exponent

@b/n i#[2
ln@rs~ t !/rs~ t/m!#

ln m

with a constantm. It converges tob/n i for large t (!Lz) at
the critical pointp5pc , but deviates from it atpÞpc . Us-
ing this property we could determine the critical pointpc
independently, and hence the exponentb/n i .

The order parameter is measured in a lattice of sizeL
5104 up to t5105 time steps and averaged over 2000–50
samples. The finite-size saturation effect is invisible up tt
5105 for this system size. Figure 4 shows the log-log plo
of the order parameter at the estimated critical points as
as the plots of the effective exponents at and near the c
cality. From these plots, we estimatepc50.046 87(2),

FIG. 4. Left: Order parameter decay atp5pc at eachr 50.0
~top!, . . . ,1.0 ~bottom!. Right: The effective exponent@b/n i# de-
fined withm58. Solid lines represent the effective exponents at
estimated critical points~see text! and dotted~broken! lines at su-
percritical ~subcritical! points at eachr 50.0 ~bottom!, . . . ,1.0
~top!.
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0.055 05(5), 0.066 37(2), 0.083 17(4), and 0.1113(1) at
each value ofr 50, 0.25, 0.5, 0.75, and 1, respectively. E
cept for ther 51 case, the values of the effective expone
at the estimatedpc do not show any significant systemat
error and seem to reach their asymptotic values quite earl
around t5103. Statistical fluctuations are also very sma
The off-critical data in Fig. 4 at the values ofp displaced by
the amount of error bars in the abovepc estimates clearly
show either upward or downward curvatures, which dem
strates the accuracy of ourpc estimate. Moreover, thesepc
values are in very good agreement with those obtained f
the defect simulations~see Table I!.

The values ofb/n i are given by the limiting values of the
effective exponents for larget at the estimatedpc , which are
presented in Table II. For consistency, we use the de
simulation results for thepc values and their errors. Th
estimated values ofb/n i are again in excellent accord wit
the values ofd51/z2(h1d8) measured in the defect simu
lations forrÞ1, which implies that the hyperscaling relatio
@15# holds in this model.

Note that the correction to scaling is significant at t
PCPD point (r 51), as found in the defect simulations. A
r 51, the effective exponent plot shows a strong time dep
dence even at the estimated critical point and there is a
ticeable curvature in Fig. 4. It leads to a rather large erro
the pc estimate and, hence, the exponent estimates. Ou
timate ofb/n i also shows a noticeable discrepancy with t
estimate ofd ~see Tables I and II!. However, this discrepancy
presumably comes from the inaccurate estimation ofpc at
r 51 and insufficient time steps getting into the asympto
regime. So it cannot be regarded as an evidence for
breakdown of the hyperscaling relation at the PCPD poin

The steady-state pair density fort@Lz satisfies

rs~«,t5`,L !5L2b/n'h~«L1/n'!, ~4!

where the scaling function behaves ash(x);xb for largex
and becomes a constant nearx.0. At criticality («50), it
decays algebraically with size asrs;L2b/n'. Utilizing this
algebraic scaling property, we could also estimate the lo
tion of the critical pointspc . They again agree perfectly we
with the previous other results.

We run 103–104 samples up to 43106 time steps for the
system sizeL526, . . . ,211 at the estimated critical point
given in Table I. Plots ofrs versusL at each critical point are

e

TABLE II. Critical exponents of the GPCPD and correspondi
values of the DP and DI classes, taken from Ref.@22#.

r b/n i b/n' z n' b

0 0.159~1! 0.252~3! 1.58~1! 1.10~1! 0.277~5!

0.25 0.173~5! 0.282~5! 1.64~5! 1.10~3! 0.310~14!

0.50 0.197~3! 0.330~6! 1.69~5! 1.10~3! 0.363~17!

0.75 0.230~5! 0.40~1! 1.72~5! 1.17~5! 0.468~30!

1 0.27~4! 0.50~4! 1.8~2! 1.30~10! 0.65~12!

DP 0.1596~4! 0.2522~6! 1.5798~18! 1.0972~6! 0.2767~4!

DI 0.285~2! 0.500~5! 1.750~5! 1.84~6! 0.92~3!
2-6
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presented in Fig. 5. A least-squares straight-line fitting in
log-log plot might yield the value ofb/n' . However, it
would result in an inaccurate estimate in the presence
strong correction to scaling. Instead, we made use of an
fective exponent@b/n'#52 ln@rs(2L)/rs(L)#/ln 2 to extract
the accurate exponent value from the extrapolation. It is p
ted in the inset of Fig. 5 and the results are presented in T
II. As before, there exists a strong correction to the pow
law scaling at the PCPD point atr 51, whereas such an
effect is very small for the other values ofr.

With pc andb/n' determined, we could estimate the d
namic exponentz using the scaling form in Eq.~3!. It was
estimated as the optimal value that yields the best collaps
rs(«50,t,L) for L527, . . . ,211 ~see Fig. 6!. The resulting
values ofz are presented in Table II. They are consistent w
the ratio of the two exponent ratios,b/n' and b/n i , and
agree very well with the values measured in the defect si
lations.

We also determined the value ofn' by collapsing off-
critical steady-state data ofrs(«,t5`,L) in the scaling plot,
using Eq.~4!. In Fig. 7, the data for eachr collapse well on

FIG. 5. The power-law scaling behavior of the order parame
at p5pc at eachr. The solid line is a guide for the eyes whose slo
is b/n' in Table II.

FIG. 6. Scaling plots according to Eq.~3! at each r 50.0
~top!, . . . ,1.0 ~bottom!. Each dataset is shifted vertically by a co
stant factor to avoid an overlap with others at different values or.
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a single curve with a specific value ofn' , respectively. The
order parameter exponentb is then obtained by a product o
b/n' andn' and presented in Table II. They are equal to t
slopes of the scaling functionh(x) for largex in the log-log
scale as shown in Fig. 7.

At the PCPD point (r 51), our results are consistent wit
those obtained by Carlonet al. @34# @pc50.111(2), z
51.87(3), and b/n'50.50(3)] and Hinrichsen @35# @pc

50.1112(1), b/n i50.25(2), z51.83(5), b,0.67]. Al-
though some of critical exponent ratios are close to the
values, the critical exponents are incompatible with those
the DI class. They are also inconsistent with the DP univ
sality class. The strong correction-to-scaling behaviors w
observed at the PCPD point withr 51 in both the defect and
the static simulations. So our estimates for the critical ex
nents contain considerable uncertainty at the PCPD po
However, such corrections are not prominent for other val
of r, which enables us to estimate the values of the criti
exponents very accurately forr ,1. As expected, the value
of the critical exponents atr 50 agree very well with the DP
values.

For 0,r ,1, the correlation length exponentn' seems to
remain the same as the DP value for a wide range ofr, at
least up to 0.75. The value of the relaxation time expon
n i5zn' seems to increase slightly with increasingr ~10% up
to r 50.75), but, within present numerical accuracy, it m
be difficult to conclude that its variation is real and not d
to corrections to scaling. However, it is clearly visible th
the order parameter exponentb ~alsob/n' andb/n i) varies
considerably withr ~more than 60%!. It clearly signals a
universality class with scaling exponents varying contin
ously with the parameterr.

Summing up all results, our Monte Carlo simulatio
show that the GPCPD displays the critical phenomena
tinct from the DP and DI classes, with continuously varyi
exponents depending on the strength of the long-te
memory effectr. These results are quite surprising and
markable. In the renormalization group language, it impl

r
FIG. 7. Scaling plots according to Eq.~4! at each r 50.0

~bottom!, . . . ,1.0 ~top!. The solid line is a guide for the eyes whos
slope isb in Table II. Each dataset is shifted vertically by a consta
factor to avoid an overlap with others at different values ofr.
2-7
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that there is a fixed line parametrized byr, instead of fixed
points at two end points: the DP (r 50) and the PCPD poin
(r 51).

Continuously varying critical exponents in nonequili
rium systems are very rare. Systems with infinitely ma
absorbing states like the PCP may display continuously v
ing exponents depending on initial conditions, but only t
exponents describing nonstationary properties (d8 andh) are
varying @13#. This variance is even disputed very recen
@17,18#. Lévy-type long-range flights are known to be re
evant to absorbing critical phenomena and the station
critical exponents vary continuously with the exponent d
scribing the long-range tail distribution of the flights@27#.
However, the GPCPD involves only short-range proces
Recently, multispecies particle reaction-diffusion syste
with interspecies hardcore interactions are conjectured to
play continuously varying stationary-state exponents, but
transition occurs at the trivial annihilation point@28#. More-
over, the variance is very small and it would be extrem
difficult to confirm it numerically. Our studies sugge
strongly that the GPCPD belongs to a completely differ
type of universality class with continuously varying exp
nents which has not been explored before.

IV. UNIVERSALITY

In order to establish the universality class firmly, we stu
other model systems that share the common feature of
memory effect with the GPCPD. As described in Ref.@38#,
the PCPD can be regarded in a coarse-grained level
cyclically coupled system of two particle species: one s
ciesA performing DP-like dynamics and the other speciesB
performing the annihilating random walks. In the GPCP
model, a particle pair corresponds to anA particle and a
solitary particle to aB particle. Two species are couple
through transmutations, which leads to the long-te
memory effect. We set up two different 1D models of a c
clically coupled system and investigate numerically th
scaling behavior to check our universality class. The t
typical DP dynamics are employed for theA-particle dynam-
ics, i.e. the branching-annihilating random walk model w
one offspring~BAW1! @12# and the contact process.

The first model~referred to as theABBmodel! adopts the
BAW1 evolution rule for theA dynamics. Each lattice site i
either occupied by anA or B particle, or empty. First, selec
a site at random. When it is occupied with anA, the A par-
ticle ~a! branches anA with probability (12p) on a neigh-
boring site, or~b! hops to a neighboring site with probabilit
p(12m), or ~c! transmutes to aB particle with probability
pm. When the branched or hoppingA particle lands on an-
otherA particle, bothA particles annihilate immediately as i
the BAW models. In case that it would land on aB particle,
the trial is rejected and theB particle transmutes to theA
particle. When the selected site is occupied with aB particle,
theB particle hops to a neighboring site with probabilityd or
does nothing with probability 12d. When it would land on
another particle~either A or B), the trial is rejected and al
involved B particles transmute toA particles. When the se
lected site is vacant, nothing happens.
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The evolution rule of the second model~the ABC model!
is almost equivalent to theABB model, except that the con
tact process is adopted for theA particle dynamics. AnA
particle ~a! branches anA with probability (12p) on a
neighboring site, or~b! vanishes spontaneously with prob
ability p(12m), or ~c! transmutes to aB particle with prob-
ability pm. When the branchedA particle would land on
eitherA or B particle, the trial is rejected and the involvedB
particle transmutes to theA particle. AB particle hops to a
neighboring site with probabilityd or does nothing with
probability 12d, as in the ABB model. When it would land
on another particle~eitherA or B), the trial is rejected and al
involved B particles transmute toA particles.

In both models, the two species of particles are coup
cyclically through the transmutations. The transmutation r
from A to B is controlled explicitly by the parameterm. As m
increases, the transmutation events occur more likely. Am
50, the A→B channel is completely blocked. Therefo
there is no feedback mechanism to change theA particle
density through intermediateB particles. The transmutation
rate fromB to A is implicit and determined by the evolutio
rule and the other control parameters. TheB→A channel
relies heavily on the diffusive property ofB particles. With
nonzerod, the B particles diffuse until they meet anothe
particle and transmute to theA particles. This process in
vokes the same mechanism that gives rise to the long-t
memory effect in the GPCPD model formÞ0. TheB par-
ticles created by theA particles through transmutations pe
form the random walks before transmuting back to theA
particles at later times. Atd50, the B→A channel is still
open, but only with the short-term memory processes, wh
should be irrelevant.

We expect to observe the same type of critical behavio
as in the GPCPD model, characterized by the continuou
varying critical exponents. We performed the defect a
static simulations to locate the critical points and estimate
critical exponents of theABBand theABCmodels at severa
values ofm with fixed hopping probabilityd51. In Fig. 8,
we compare the space-time structures of spreading patt
of activities in the GPCPD (r 50.5), ABB (m50.5), and

FIG. 8. Critical spreading of activities originated from a se
~a particle pair for the GPCPD and anA particle for theABB and
ABC models!. A black pixel represents a particle pair or anA par-
ticle, and a gray one a solitary particle or aB particle. The horizon-
tal @vertical ~down!# direction corresponds to the space~time!
direction.
2-8
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UNIVERSALITY CLASS OF ABSORBING TRANSITIONS . . . PHYSICAL REVIEW E 69, 016122 ~2004!
ABC (m50.2) models at critical points. In all cases, th
intermediate long-range diffusive processes of the solit
particles~or theB particles! are commonly observed betwee
the particle pairs~or A particles! at different space-time po
sitions. The time scale of these processes represents th
fective lifetime of the intermediateB particles, which seems
to be comparable to the simulation time. This aspect will
discussed quantitatively in the following section.

We take theA particle density as the order parameter a
use the same definition of the surviving samples as in
GPCPD model, i.e. only the samples with at least oneA
particle are regarded as surviving ones. Here, we only s
the results without showing the data. Our numerical simu
tions confirm that bothABB andABC models show continu-
ously varying exponents with the parameterm. As expected,
both models converge to the DP class atm50.

In Fig. 9, the values of the critical exponents at vario
transmutation rates are plotted together with those for
GPCPD model and those available from other previo
works @35,36,38–40#. Remarkably, they are lying along
single smooth line. It indicates that all these models fall in
the same universality class with continuously varying ex
nents that can be parametrized by a single param
~memory strength!. The lines forb/n' andb/n i seem to be
almost linear for smallb,0.5. It implies that the values o
the correlation exponents,n' andn i , do not vary too much
from the DP values, in contrast to a wide variation of t
order parameter exponentb.

V. LIFETIME DISTRIBUTION
OF INTERMEDIATE PARTICLES

Numerical results presented in the previous sections s
gest that the critical exponents of the GPCPD model v
with the parameterr which controls memory strength. Th
memory effect is mediated by diffusing solitary particle
Each of them is created from a pair of two or more particl
diffuses until colliding with another particle, and then form
a particle pair with the probabilityr. Such a long-term pro-
cess makes dynamics of the order parameter~pair density!

FIG. 9. Parametric plots ofb/n' ~filled symbol! andb/n i ~open
symbol! with respect tob of the GPCPD, theABB, and theABC
models. The data taken from Refs.@35,36,38–40# are also plotted
and labeled by ‘‘Others.’’
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nonlocal in time. In this section, we give a quantitative d
scription of the long-term process by measuring the distri
tion of lifetime of intermediate solitary particles.

Simulations are performed up tot<tmax with a single par-
ticle pair (A particle! on an infinite lattice initially. Whenever
an isolated particle (B particle! is created, a label recordin
the creation time is attached to it. Then, we can easily m
sure thelifetime of each isolated particle by recording th
elapsed time until it collides with another particle since
creation ~free diffusing time!. We expect that the lifetime
distributionF(t) may be of the power-law type for larget,
because its long time tail should be governed by the ann
lating random walk processes of solitary~B! particles in the
presence of particle pairs (A).

At the critical points of the GPCPD model, the lifetim
distribution F(t) was measured withtmax5103, . . . ,106.
Figure 10 showsF(t) averaged over 104 surviving samples
with tmax5106. We found that it follows power law asymp
totically ~larget),

F~t!;t2u. ~5!

The values ofu are determined from the effective expone
plots as shown in the inset. After the transient regime
small t, the effective exponent converges tou52.25(5) at
all values ofr.

The distribution deviates from the power law whent is
comparable with the simulation timetmax. At t5tmax, there
may exist remnant isolated particles whose lifetime can
comparable with or is larger thantmax. The data of such
isolated particles are not included inF(t), which leads to a
slight downward deviation ofF(t) for larget.tmax. There-
fore, the apparent blowup of the effective exponentu near
1/t50 in the inset of Fig. 10 should be ignored. The pow
law distribution withu52.25(5) is observed universally fo
all three models considered in this paper. Note that
power-law distribution sets in later as one approaches
PCPD point atr 51. Presumably, this is related to the stro
correction-to-scaling behavior observed in the PCPD.

For a more systematic analysis of the finite-tmax effect, we
present in Fig. 11 the scaling plot ofF(t)tmax

2.25 versust/tmax.

FIG. 10. Log-binned lifetime distribution of solitary particles
the critical points of the GPCPD withr 50.25, . . . ,1.00 andtmax

5106. Inset: Effective exponent forF(t);t2u. The apparent cur-
vature neart.tmax is simply due to the finite-tmax effect.
2-9
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The data collapse shows that the lifetime distribution follo
the scaling relationF(t)5tmax

2u gr(t/tmax) with u52.25. The
scaling functiongr(x) should behave asx2u ~independent of
r ) for smallx, which is consistent with numerical data in Fi
11.

The mean lifetime of the intermediate solitary particle
t̄;*tF(t)dt, is finite for u.2 and becomes infinite foru
<2. With finite lifetime, one may guess that the long-te
memory effect can be washed away by rescaling the time
t̄. Without the long term memory effect (r 50), the GPCPD
displays the critical behavior in the DP class. Therefore,
may conclude that the presence of the intermediate part
and their long-term memory feedback are irrelevant and
GPCPD belongs to the DP universality class, regardles
the value ofr. The exponent valueu52.25 is quite near the
naively thought marginal value ofumar52 where the mean
lifetime t̄ begins to diverge. With the DP scenario, one m
argue that the apparent deviation of the critical expone
from the DP values is due to the strong corrections to sca
induced by quite larget̄. However, a careful analysis fo
numerical data reveals that there are not much correction
scaling for smallr. Hence, this DP scenario does not seem
be supported by our present numerical results.

As an alternative, we propose another possible scenar
account for continuously varying non-DP exponents that
long-term memory effect plays the role of the marginal p
turbation to the DP system. We note that the finiteness of
lifetime does not always guarantee the irrelevancy of
memory effects to the DP universality class in the fully i
teracting theory. The Le´vy-flight DP system is such an ex
ample @27#, where it is analytically shown by the
e-expansion-type RG analysis that the relevancy of lo
range flights sets in a little bit earlier than expected from
naive noninteracting theory. It implies that the system flo
into a non-DP fixed point with finite mean flight distance. W
suspect that a similar situation also occurs in the GPCPD
umar becomes slightly bigger than 2. In this point of view, o
scenario may be still alive and even considered reason
becauseu52.25(5) is not far away from 2. A definitive tes

FIG. 11. Scaling plots of the log-binned lifetime distribution
solitary particles at the critical points of the GPCPD atr
50.25, . . . ,1.00. The straight lines have the slope 2.25. Ea
dataset at different values ofr is shifted vertically by a constan
factor to avoid overlaps.
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on our scenario needs accurate determination of the marg
value in a full field-theoretical context, which is beyond th
scope of the current paper.

VI. SUMMARY AND DISCUSSION

In summary, we introduced a generalized version of
PCPD~GPCPD! with a parameter controlling the long-term
memory effect. The GPCPD connects the DP fixed poin
the PCPD point continuously. We investigated numerica
the nature of the absorbing phase transitions for the GPC
in one dimension. Our numerical results strongly suggest
the GPCPD belongs to the universality class, which is ch
acterized by the long-term memory effect and the conti
ously varying critical exponents. This model can be view
as the cyclically coupled systems based on the DP dynam
with the long-term memory effect. We showed numerica
that the two other variants of these systems fall into the sa
universality class.

We presented one possible scenario to account for
universality class that the intermediate particles generate
long-term memory effect which may play the role of th
marginal operator to the DP fixed point. However, this
only speculative and definitely needs a full field-theoreti
treatment.

Very recently, there have appeared several works on
PCPD and related models. Park and Kim@45# studied three
different variants of the PCPD along a special line in t
parameter space of the diffusion and the reaction rates. T
found numerically that the exponent values for all three m
els are consistent within statistical errors, e.g.,b/n i
.0.24(1). However, this does not imply that the PCPD sc
ing with general parameter values can be also described
the same fixed point.

Dickman and de Menezes@46# studied the PCPD using
the same ensemble for the surviving samples as we u
here. They found that this ensemble~called as the reactive
sector! is quite useful to study the finite-size scaling of th
order parameter. They observed numerically that the crit
exponents vary with the diffusion rated. Similar to our re-
sults, the correlation exponentn' appears to be independe
of d and the same as the DP value. The relaxation time
ponentn i and the order parameter exponentb vary with d up
to only about 20%~much smaller than the variation in th
GPCPD;60%), which leads to an indecisive conclusion

More recently, Hinrichsen@47# introduced a cellular au-
tomaton, which presumably belongs to the same universa
class as the PCPD. Using a parallel update, he simulated
model with size up toL5221 until t52.53106. This work
confirms again the difficulty in studying the critical behavi
of the PCPD. The system does not reach the asymptotic s
ing regime at that time scale. From the temporal trend of
effective exponents, he suggested an extremely slow cr
over to DP, but this suggestion is also far from being conc
sive. Recently, Barkema and Carlon@48# supported this sce
nario of an extremely slow crossover to DP by analyzi
numerical data, assuming that the correction to scaling is
the special type. However, our numerical results for smar
do not show this extremely slow crossover to DP as d

h
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cussed in the preceding section.
Kockelkoren and Chate´ @49# studied general reaction

diffusion processes without the fermionic constraint. Fro
Monte Carlo study up toL5222 and t;107, they obtained
b/n i.0.200 in a model characterized withXX→XXX and
XX→B. They reported that the same exponents are
served in other similar models, and hence claimed that th
is a single universality class for the PCPD. However, th
study does not cover the general cases with controlling
memory effect. O´ dor @50# studied the PCPD with Monte
Carlo simulations up toL5105 and t5108, and obtained
b/n i.0.21 for high diffusion rates andb/n i.0.25 for low
diffusion rates. On the other hand, assuming a logarith
correction, Ódor obtainedb/n i.0.21 also for the low diffu-
sion rates.

These numerical results seem to favor a single non
universality class for the PCPD. However, as hinted in
work of Dickman and de Menezes@46#, there may be, if any,
a rather small variation (,20%) of the scaling exponents b
changing diffusion rates. So it is not surprising to see
apparent single universality under the effect of huge corr
tions to scaling. In contrast, the exponent variations in
GPCPD are much bigger (;60%), so it is easier to confirm
their variations.

We believe that the long-term memory effect is respo
sible for unusually long relaxation and non-DP scaling, a
possibly for continuously varying exponents. The long-te
memory is also present in the ordinary PCPD model, but
controlled implicitly via diffusion ratesd of isolated or inter-
mediate particles. So, it may not be clear to predict how
long-term memory emerges withd. In the GPCPD model, we
directly control the strength of the long-term memory effe
by varying the parameterr.

The GPCPD model smoothly connects the DP fixed po
(r 50) to the PCPD model (r 51), in a sense that the expo
nent values change withr continuously and monotonically
starting from the DP values. In contrast, the PCPD expon
values seem to jump from the DP values and decre
slightly with the diffusion rated. For example, as soon as w
turn on the diffusion process,b/n i increases abruptly from
the DP value of 0.1595 to;0.25 atd50.1 and slightly de-
creases to 0.20–0.23 at highd50.7–0.8@46,49,50#. Even if
one accepts the claim that this variation is not real andb/n i
converges to;0.20 asymptotically at any nonzerod ~single
universality class!, one cannot avoid the fact that correctio
to scaling are much bigger at lowd than at highd. This
suggests that thed→0 limit in the PCPD model should en
counter an unusual crossover behavior. In the ordinary cr
over, one expects an interference of the DP fixed point on
PCPD universality class atd.0, which generates an appa
ent exponent value between the DP and the PCPD value
numerical results simply disagree with this. The appar
01612
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value ~0.25! for b/n i at low d is higher than both the DP
~0.16! and the estimated PCPD value~0.20!. Therefore, the
d50 limit in the PCPD model is unusually singular, whic
makes it impossible to study the PCPD scaling behavior s
tematically starting from the DP fixed point. In contrast, o
GPCPD model is generically well suited to a systematic
vestigation of the PCPD model by controlling the long-te
memory effect directly.

Besides that, there is one important technical point
adopted in this paper for analyzing the numerical data.
explained in Sec. III, we chose thesurvivingensemble as the
collection of samples with at least one particle pair and
order parameter as the particle pair density. With the conv
tional choice for the surviving ensemble~samples not
trapped in one of the absorbing states!, we found that the
order parameter in finite-size systems bears two time sc
~nontrivial relaxation time and trivial pair annihilation time!
and does not show simple scaling collapse with one-varia
scaling function like in Eq.~3! @44#. Our choice of the sur-
viving sample should involve only one time scale and lea
to an excellent scaling as shown in Fig. 6. With this e
semble, it is natural to choose the particle pair density~rather
than the particle density! as the order parameter.

Summing up, we believe that the GPCPD model serve
an efficient generalized model to study the PCPD model s
tematically. The GPCPD seems to have much less cor
tions to scaling, compared to the ordinary PCPD mod
which enables us to present accurate numerical data for
exponent values. In Figs. 2 and 4, one can clearly see tha
asymptotic values for the exponents set in quite early,
around t5103, except the PCPD case (r 51). In order to
check any possible long time crossover, we performed
extra static simulation for the GPCPD atr 50.25 on a lattice
of sizeL543105 up to t543107. We found the more ac-
curate critical point atpc50.055 045(3) and the exponen
b/n i.0.172(2) @44#. The result is in excellent accord wit
our early-time result on a smaller lattice~see Tables I and II!.
This confirms again that the GPCPD for at least smallr does
not suffer from huge corrections to scaling as observed
Refs.@47,50#. However, for larger 50.75, we found that the
exponentb/n i tends to become smaller and seemingly a
proaches around 0.20 withpc50.083 11(1) in the very long
time limit neart;106 @51#. So, at this stage, it is fair to sa
that the exponentb/n i is not much sensitive to varyingr for
r>0.5, in contrast to the case forr ,0.5.
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@37# H. Chatéand P. Grassberger~unpublished!.
@38# H. Hinrichsen, Physica A291, 275 ~2001!.
@39# K. Park, H. Hinrichsen, and I.-M. Kim, Phys. Rev. E63,

065103~2001!.
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